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As a stepping stone towards understanding acoustic resonances in axial flow com-
pressors, acoustic resonances are computed numerically in fixed single and tandem
plate cascades in an infinitely long annular duct. Applying perfectly matched layer
absorbing boundary conditions in the form of the complex scaling method of atomic
and molecular physics to approximate the radiation condition the resonance problem
is transformed into an eigenvalue problem. Of particular interest are resonances with
zero radiation damping (trapped modes) or very small radiation damping (nearly
trapped modes). Such resonances can be excited by wakes from compressor cascades
or struts. If the shedding frequency is sufficiently close to an acoustic resonant
frequency, the latter may control the vortex shedding causing high-intensity tonal noise
or occasionally even blade failure. All resonances are computed for zero mean flow
approximating low-Mach-number flows. The influence of various cascade parameters
on the resonant frequencies is studied and, whenever possible, our numerical results
are compared with published experimental findings.

1. Introduction
Based on observations of blade vibrations, which could neither be attributed to

blade resonances nor blade flutter in several commercial compressors, Parker and his
colleagues conducted a series of experiments with straight (Parker 1966; Parker &
Griffiths 1968) and annular cascades (Parker 1967a; Parker & Pryce 1974). These
experiments demonstrated conclusively that vortices shed periodically in the wake
of thin plates or blades in a cascade can be enhanced considerably by acoustic
resonances leading to high-intensity discrete frequency noise and/or blade vibrations.
Parker pointed out that contrary to the opinion held up to that time, these resonances
are controlled by the geometry of the system and not the natural frequencies of
mechanical blade vibrations (their main findings are nicely reviewed in Parker &
Stoneman 1989). Similar resonant acoustic phenomena were observed in single-stage
axial flow compressors by Parker (1968) in multistage axial flow compressors by Camp
(1999) and Hellmich (2008) (see also Hellmich & Seume 2008) as well as in centrifugal
compressors by Ziada, Oengören & Vogel (2002).

An essential result of Parker’s experiments was that these resonant acoustic modes
appeared to decay exponentially upstream and downstream from the cascade. Using
this exponential decay property Parker (1967b) was able to compute the resonant
frequencies and modes for a single infinitely thin plate in a wind tunnel by a relaxation
method. These standing wave modes are now commonly referred to as Parker modes
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and were fully confirmed by further experiments of Cumpsty & Whitehead (1971).
It should be emphasized that in the experiments even fully turbulent wakes were
coordinated into coherent vortex-street-like eddies by these acoustic resonances.

In the context of water waves, Evans & Linton (1991) (see also Evans 1992)
rediscovered these Parker modes and Evans et al. (1994) gave a rigorous mathematical
proof for the existence of the Parker modes showing that they have zero radiation loss
and are trapped near the finite-length plate in the duct. Therefore, the Parker modes
are an example of so-called trapped modes defined as strongly localized resonant
modes with zero radiation loss. In the theory of water waves, Ursell (1951) was the
first to establish the existence of trapped modes. In quantum waveguides trapped
modes are known as bound states, cf. Duclos & Exner (1995) or Linton & Ratcliffe
(2004). Similar trapped modes are found in electromagnetic waves, cf. Porter & Evans
(1999), and elastic waves, see, for example, Porter (2007). Mathematically the existence
of truly trapped modes is of considerable interest because it means that there exists
an eigenfunction of the homogeneous problem which makes the solution of the
forced scattering or radiation problem non-unique. In practical engineering trapped
modes with zero damping, or nearly trapped modes (in electromagnetic multilayer
structures these modes are termed ‘defect modes’) with very small damping, are of great
importance because a small radiation damping can lead to a high-amplitude response
if excited by time-periodic sources causing annoying noise and/or structural damage.
Trapped modes became the subject of renewed interest after numerical computations
of Maniar & Newman (1997) showed unusually high loads at particular frequencies
of water waves impinging on a row of equally spaced circular cylinders, and much
effort has gone into providing both rigorous existence proofs as well as numerical
evidence for the presence of trapped or nearly trapped modes.

Starting with the original paper of Parker (1967b) various early publications were
devoted to the actual computation of resonances and trapped modes. Guided by his
experimental data Parker (see also Parker & Stoneman 1985) solved the Helmholtz
equation numerically by fixing the location of the nodes and applying a Dirichlet
boundary condition a finite distance away from the plate. Unless one has actual proof
that the modes are truly trapped, this can lead to erroneous results: for example, Koch
(1983) showed that the trapped Parker modes become damped resonances if the
mean flow Mach number is finite (compare also Duan 2004). For the computation of
these damped resonances a radiation condition, allowing only outgoing waves, has to
be employed whereas application of a Dirichlet boundary condition a finite distance
away from the plate gives unphysical reflections, which falsify the results. Therefore,
the prevailing approach has been to solve the time-periodic scattering problem and
search for solutions of the homogeneous problem as the amplitude of the incoming
wave approaches zero. Usually this leads to an infinite system of equations which
can be truncated and the determinant of which has to vanish. Examples are the
mode-matching results of Nayfeh & Huddleston (1979), Evans & Linton (1994)
and Duan (2004); the Wiener–Hopf results of Koch (1983), Evans & Linton (1991)
and Woodley & Peake (1999a) or the multipole expansions of Ursell (1951) and
Callan, Linton & Evans (1991). If one can show that there exist resonances with
zero damping, this can be used as constructive existence proof of trapped modes.
The disadvantage of all above mentioned (semi-analytic) solution methods is that
they are only applicable for very special geometries.

Recently, Hein, Hohage & Koch (2004) proposed a method for the numerical
computation of resonances by approximating the radiation condition via perfectly
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matched layer (PML) absorbing boundary conditions. Using, for example, a finite
element approximation the resonances of an arbitrary object in an unbounded domain
can thereby be found by solving a (large) linear generalized eigenvalue problem (the
frequency-dependent PML formulation of Bérenger (1994) requires the solution of a
nonlinear eigenvalue problem). In a series of papers Koch (2005), Hein et al. (2007),
Duan et al. (2007) and Hein & Koch (2008) applied this method successfully to
various two- and three-dimensional open domain problems. Trapped modes with zero
radiation loss are only possible for objects in laterally bounded domains. However,
it should be stressed that the numerical method of Hein et al. (2004) cannot give a
mathematically rigorous proof for the existence of truly trapped modes. But if the
damping of the resonance can be reduced to very low values by refining the numerical
grid, this is usually a strong indication for the existence of a trapped or nearly trapped
mode. From a practical point of view it does not matter whether the mode is truly
trapped or merely nearly trapped as long as the damping is very small, which is
equivalent to a high-quality-factor resonance.

The primary objective of the present paper is to predict the acoustic resonances
(resonant frequencies and radiation damping) of plate cascades in an annular duct
modelling the situation in axial flow compressors. Of particular interest are trapped or
nearly trapped modes with vanishingly small radiation damping. Instead of selecting
a specific compressor blade geometry we consider in the first part a single annular
plate cascade which was investigated experimentally by Parker & Pryce (1974), and
examine the influence of various cascade parameters on the trapped mode frequencies.
As trapped modes exist only for frequencies below the corresponding duct cutoff
frequency, they cannot be excited linearly via incoming duct waves (recently Li &
Mei (2006) showed that trapped modes can be excited subharmonically by an incident
wave of twice the eigenfrequency). Parker identified periodic vortices shed in the wake
of blunt-edged blades as the main source exciting trapped modes in his experiments.
Such vortices are shed normally at comparatively high frequencies. However, Parker
(1984) also indicated that vortices shed from fully or partially stalled blade rows
could be another source of excitation at off-design conditions and at much lower
frequencies.

Parker (1997) indicated that acoustic resonances have caused blade failures in
high-speed multistage compressors during aero-engine research and development in
the early eighties, but for proprietary reasons almost no data have been published in
the open literature. Legerton (1992) analysed relevant acoustic resonance phenomena
in several full-scale Rolls Royce research compressors but it can be assumed
that similar problems have been encountered by other aero-engine manufacturers.
Recently, acoustic spinning mode resonances were observed by Ulbricht (2002) in
her experimental investigation of compressor stability in stationary annular cascades,
and Hellmich (2008) found spinning mode resonances close to the stall limit of a
four-stage axial flow compressor. To state it clearly, the forcing mechanism as well as
the highly nonlinear process of frequency locking at resonance is not subject of this
investigation. Here we merely compute the acoustic trapped or nearly trapped mode
frequencies which might enhance any existing periodic source of comparable frequency
and demonstrate how the resonant frequencies depend on various cascade parameters.
All above mentioned source mechanisms require a mean flow. However, Koch (1983)
showed that for low Mach numbers the influence of mean flow on the acoustic
resonances is negligibly small, and we therefore compute the resonances for zero mean
flow.



158 W. Koch

In the second part of our paper we compute the resonances in stationary tandem
cascades. Stoneman et al. (1988) examined the acoustic resonances of tandem plates in
a rigid-walled rectangular duct experimentally and computationally. Legerton (1992)
performed additional tests with tandem plates. They found strong enhancement of the
discrete-frequency noise if the vortex shedding frequency was close to the resonant
acoustic frequency analogous to the single-cascade Parker modes. Similar effects are
expected in a compressor stage. Modelling an idealized compressor stage, Legerton
(with first results published in Legerton, Stoneman & Parker 1991) investigated
stationary annular tandem cascades experimentally and found that the plate spacing
affected both the amplitude of the sound produced as well as the frequency at which
the resonance was excited. Extending the single-plate Wiener–Hopf analysis of Koch
(1983) to two-dimensional tandem cascades Woodley & Peake (1999a) computed the
resonant frequencies for one of the geometries investigated by Legerton and found
good agreement despite neglecting blade thickness and curvature of the duct passage.
In the present paper we include blade thickness and consider the annular geometry
but neglect the mean flow.

The paper is organized as follows: after a brief outline of the solution method in
§ 2 we reconsider resonances of radial fins in a circular duct in § 3. In § 4 we examine
single annular plate cascades and study the influence of various cascade parameters on
the resonant frequencies. Tandem plates and stationary tandem cascades are treated
in § 5 and a summary concludes the paper.

2. Governing equation and solution procedure
The equation governing acoustic disturbances in a medium with zero mean flow

is the wave equation. In the following all lengths will be non-dimensionalized with
a characteristic reference length l∗

ref , velocities with the ambient speed of sound c∗
0,

densities with the ambient density ρ∗
0 and pressures with ρ∗

0c
∗
0
2. Here the asterisk

superscript denotes a dimensional quantity. Assuming periodic time dependence
exp(−iω∗t∗), where ω∗ is the circular frequency, the wave equation can be reduced to
the Helmholtz equation:

�φ(x, y, z) + K2φ(x, y, z) = 0, (2.1)

for the (non-dimensional) velocity potential φ(x, y, z). �= ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

is the three-dimensional Laplacian in (non-dimensional) Cartesian coordinates
x, y, z; and K =ω∗l∗

ref /c
∗
0 denotes the dimensionless frequency, with K/2π being

the Helmholtz number. The time-independent dimensionless disturbance velocity and
pressure are then given by v(x, y, z) = ∇φ and p(x, y, z) = iKφ, respectively. On the
duct walls as well as on all plates we impose the Neumann boundary condition

∂φ

∂n
= 0, (2.2)

for sound-hard walls. The formulation of the problem is completed by imposing a
radiation condition allowing only outgoing waves.

In a numerical treatment the implementation of the radiation condition constitutes
a main difficulty because numerical computations are necessarily conducted on
truncated domains. At these finite grid boundaries unphysical reflections occur,
often causing large errors in the solution, unless special boundary conditions are
applied on the surface bounding the computational domain. Basically, there are two
methods to overcome this problem: the first uses so-called non-reflecting boundary
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Figure 1. Sketch of tandem cascade of plates (upper half of left figure) or single cascade of
tapered or swept plates (lower half of left figure) in annular duct with PMLs.

conditions on the surface bounding the computational domain. Analysing the problem
outside the truncated computational domain a relation can be established involving
the unknown solution and its derivative. This so-called Dirichlet-to-Neumann (DtN)
map is then used as boundary condition for the interior computational domain (see,
for example, Harari, Patlashenko & Givoli 1998).

The second method employs absorbing boundary conditions by adding a non-
physical layer which absorbs outgoing waves without reflection. PML absorbing
boundary conditions were introduced by Bérenger (1994) and became increasingly
popular in electromagnetic and acoustic problems (for a recent review in acoustics
see Hu 2004). Instead of the frequency-dependent PML formulation of Bérenger,
cf. the complex coordinate stretching formulation of Chew & Weedon (1994), Hein
et al. (2004) used the much older complex scaling method of atomic and molecular
physics with frequency-independent PML coefficients. The complex scaling method,
introduced by Aguilar & Combes (1971), Baslev & Combes (1971) and Simon (1973),
cf. the monograph by Hislop & Sigal (1996) or the recent review by Moiseyev (1998),
makes use of the fact that the PML eigenvalues for the infinite domain problem
coincide with the resonances of the original problem for rather general PML scalings.
In a recent paper Kim & Pasciak (2009) proved that the eigenvalues of the truncated
PML problem (a necessity for the numerical approach) converge to the desired
resonances as the PML domain increases.

In the present paper we shall apply the complex scaling method to the computation
of acoustic resonances in single or tandem plate cascades in an annular duct as
depicted in figure 1. An annular duct with outer diameter D and inner diameter d

contains a single or tandem cascade of finite thickness plates. The N1 evenly distributed
plates of the first cascade are of length l1 and thickness s1, the N2 plates of the second
cascade are of length l2 and thickness s2 with a gap g between the two cascades. The
plates can be tapered with a leading-edge taper angle γl and a trailing-edge taper
angle γt or swept with a sweep angle χ as sketched in figure 1. Furthermore, the plates
can be staggered with a stagger angle α where α = 0 for an unstaggered cascade.

In the following we provide a brief overview of how the PML works: in the annular
PML domain in front and behind the tandem cascade, see figure 1, φ(x, y, z) is
continued analytically with respect to the axial variable x to the complex variable ξ ,
e.g.

ξ (x) = x + iσ (x). (2.3)
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The spatial damping function σ (x) is usually chosen in power form, smoothly starting
at the PML interfaces at x = xr

PML and x = −xl
PML respectively:

σ (x) =

⎧⎪⎨
⎪⎩

σ0 (x − xr
PML)β, x > xr

PML,

0, −xl
PML � x � xr

PML,

−σ0 (−x − xl
PML)β, x < −xl

PML.

(2.4)

For a positive damping coefficient σ0 and a constant shape parameter β � 1 (we
chose β =1 for all our computations, cf. Hein et al. 2004) outgoing waves will decay
exponentially in the PML. One can therefore truncate the PML at (xr

PML +dPML) and
−(xl

PML+dPML), where dPML denotes the width of the PML. The error due to artificial
reflections at this truncated outer edge of the PML is small if σ0 and dPML are chosen
properly (in general we chose σ0 = 2 and dPML � 2). Therefore, a Dirichlet boundary
condition can be imposed at the outer edge of the PML instead of enforcing the
radiation condition, cf. Collino & Monk (1998). In this way a finite domain eigenvalue
problem results which can be solved numerically by standard methods. In this paper
we apply the high-order finite-element code NGSolve of Joachim Schöberl together
with his grid generation code NETGEN, cf. Schöberl (1997), and solve the ensuing
large eigenvalue problem with a shifted Arnoldi algorithm. The accuracy of the finite-
element solution is controlled by the maximal mesh size � of the grid and the order
p of the finite element polynomial on an individual triangle. For three-dimensional
objects the number of degrees of freedom Ndof in the finite-element formulation, and
correspondingly the storage requirements, are quite large such that we use p = 2 in
almost all our calculations. Only for occasional accuracy checks we increase p to
p = 3. In NGSolve the mesh size � can be varied locally. For example, we chose a
much coarser mesh in the PML denoted by the second number for �.

3. Radial fins in cylindrical duct
To demonstrate the applicability of our numerical method for the prediction of

standing as well as spinning mode resonances, we first compute the resonances in
a cylindrical duct with N uniformly distributed radial fins of finite chord l/D and
with finite thickness s/D. In circular and annular ducts the appropriate reference
length l∗

ref =D∗. For this problem Linton & McIver (1998) predicted trapped standing
waves using the mode-matching method and in a follow-up paper Duan & McIver
(2004) proved the existence of additional trapped spinning modes by means of Bloch
theory. The term spinning mode for a steady pressure pattern which rotates was
first introduced by Tyler & Sofrin (1962), and a finite number of trapped spinning
modes was observed experimentally by Parker & Pryce (1974) in a stationary annular
cascade. Duan & McIver showed that if the number of fins N is even, then N/2 + 1
families of trapped modes exist with a fixed number of nodal lines n in axial direction,
while for N odd (N − 1)/2 + 1 families of trapped modes are possible. This is
analogous to the existence of trapped modes in a two-dimensional channel containing
N uniformly distributed structures as investigated by Utsunomiya & Eatock Taylor
(1999), Linton & McIver (2002) and Porter & Evans (1999).

First we choose N =4 but instead of using infinitely thin fins, as used by Linton &
McIver (1998) and Duan & McIver (2004), we allow fins of finite thickness s assuming
arbitrarily s/D =0.04. Resonant modes may be classified by three numbers (m, n, ρ):
the circumferential mode number m, being the number of wavelengths around the
circumference, and n and ρ denoting the number of nodal lines in axial and radial
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Figure 2. Circular cylindrical pipe with N = 4 radial fins of thickness s/D = 0.04: (a) resonant
frequencies Re(K/2π) and (b) damping Im(K/2π) of (3, 0, 0) and (c) of (5, 0, 0) mode as
function of fin chord length l/D. Full lines mark x-symmetric trapped modes, dashed lines
mark x-antisymmetric trapped modes. p = 2, dPML = 4, σ0 = 2, �= 0.06/0.16.

directions, respectively. By assuming either symmetry (n= 0, 2, . . .) or antisymmetry
(n= 1, 3, . . .) about x =0 we may limit our computation to the half problem x � 0.
The results of our computation are shown in figure 2.

As postulated by Duan & McIver (2004), three families of trapped modes exist
for N =4 radial fins which they denoted by p = 0, 1, 2. Their first two families p =1
and p = 2 start at the (1, 0)D ≈ 0.5861 and (2, 0)D ≈ 0.9722 cutoff frequencies (m, ρ)D
of the circular pipe and end at Re(K/2π) = 0 for l/D → ∞. The cutoff frequencies
(m, ρ)D are simply j ′

m,ρ/π, where j ′
m,ρ is the ρth zero of J ′

m(x). Here Jm(x) is the Bessel
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function of the first kind. Values of j ′
m,ρ are listed, for example, in Abramowitz &

Stegun (1965, p. 411). In our figure 2(a) all cutoff frequencies (m, 0)D of the circular
pipe modes are marked by the dotted lines and are denoted on the right-hand side
of figure 2(a). The p = 0 family of Duan & McIver starts at the cutoff frequency
(4, 0)D ≈ 1.6926 and ends at the cutoff frequency denoted by (1, 0)Sector ≈ 1.016 on
the right-hand side of figure 2(a). (1, 0)Sector is the cutoff frequency of the mode with
one nodal line in circumferential direction in the sector between two infinitely long
fins and zero nodal lines in radial direction. In our figure 2 the cutoff frequencies
(m, 0)Sector are marked by the dash-dotted lines that are computed numerically as the
beginning of the continuous spectra using PMLs for fins, which are infinitely long in
axial direction. The shaded areas mark the domains of trapped modes. We notice that
by using fins of finite thickness there is a small gap between the two shaded areas
which does not exist for the infinitely thin fin results of Duan & McIver because for
infinitely thin fins (2, 0)D coincides with (1, 0)Sector .

Resonant modes (3, n, 0) also exist. They start at (3, 0)D ≈ 1.3373 and end at
(1, 0)Sector (only the (3, 0, 0) mode is shown in figure 2 by the dotted curve with the
circular symbols). As can be seen from the damping in figure 2(b) the (3, 0, 0) mode is
not trapped. (The damping is controlled by the imaginary part Im(K/2π) of the fre-
quency and is closely related to the quality factor Q = |Re(K)/(2Im(K))| of the
resonator defined as the ratio of stored energy to dissipated energy.) But it looks
like there exist embedded trapped modes at the particular l/D values marked by the
cross symbols in figure 2. With our numerical method we cannot prove the existence
of an embedded trapped mode, but by the method of bisection we could reduce
the damping of the (3, 0, 0) mode to very low values at these particular l/D values
which is a strong indication that these might indeed be truly embedded trapped
modes. To a certain degree this would be analogous to the embedded trapped modes
found by Duan et al. (2007) for the two-dimensional infinite cascade problem. The
(5, 0, 0) mode, depicted by the dotted curve with triangular symbols in figure 2,
only shows nearly trapped modes at the points with minimal damping and ends at
(2, 0)Sector ≈ 1.780 for l/D → ∞. In our numerical computation spinning modes can
be recognized as double eigenvalues with corresponding eigenfunctions which are
phase shifted by 90◦. For example, the (1, n, 0) modes are double eigenvalues while
the (2, n, 0) and (4, n, 0) modes are simple eigenvalues and therefore standing waves.

Next, we consider the 8-fin case. For N = 8 and infinitely thin plates, Linton &
McIver (1998) computed the standing wave solutions and found a fundamental change
from the N = 4 case, namely the occurrence of so-called avoided crossings or near
intersections of two families of eigenvalues. Berry & Wilkinson (1984) explained this
phenomenon as degeneracy of real eigenvalues near a so-called diabolical point where
the eigenvalue surface forms a double cone. Varying the eigenvalues as function of
one parameter (in our case l/D) near a diabolical point, the avoided crossings are
approximately double-hyperbola curves obtained by slicing the double cone near its
vertex. For the eigenvalue curves to pass exactly through a diabolical point, a second
parameter is required. Another reason for looking at the 8-fin case is that Parker &
Pryce (1974) used eight plates in their annular cascade experiment with a plate
thickness of s/D =0.02. For this reason we also choose s/D = 0.02, contrary to the
infinitely thin plates of Linton & McIver. Prescribing symmetry or antisymmetry
about x = 0 we may again limit our computation to the half problem x � 0. The
results of this computation are depicted in figure 3 for 0 � l/D � 2.

According to Duan & McIver (2004) five families of trapped modes exist for N = 8
including the spinning modes. All trapped modes start at the pipe cutoff frequencies
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Figure 3. Circular cylindrical pipe with N = 8 radial fins of thickness s/D = 0.02: (a) resonant
frequencies Re(K/2π) and (b) damping Im(K/2π) of (5, 0, 0) mode as function of fin chord
length l/D. Full lines mark x-symmetric trapped modes, dashed lines mark x-antisymmetric
trapped modes. p = 2, dPML = 2, σ0 = 2, �= 0.06/0.16.

(m, 0)D marked on the right-hand side of figure 3(a). The first four families start at
(1, 0)D, . . . , (4, 0)D and end at Re(K/2π) = 0 for l/D → ∞ whereas the fifth family
starts at (8, 0)D ≈ 3.0709 and approaches Re(K/2π) = (1, 0)Sector ≈ 1.653. The modes
starting at (5, 0)D, (6, 0)D and (7, 0)D are damped resonances as can be seen for the
depicted (5, 0, 0) mode. With the resolution limited by the storage of our desktop
computer it is difficult to distinguish the various eigenfunctions for higher l/D and
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Re(K/2π), but it appears that at particular values of l/D nearly trapped or perhaps
embedded trapped modes occur which are marked by the cross symbols in figure 3.

Between modes with the same circumferential mode number m but different number
of axial or radial nodal lines avoided crossings occur, for example, between the
(4, 2, 0) mode and the (4, 0, 1) mode. This is possible because between (4, 0)D and
(0, 1)Sector ≈ 1.189, marked by the lower shaded area in figure 3(a), not only the (4, n, 0)
modes are cut on but also the (4, n, 1) modes. All (m, n, 1) modes approach (0, 1)Sector

as l/D → ∞. It is interesting that at these avoided crossings the eigenfunctions
interchange their identity, i.e. for example, the (4, 2, 0) mode becomes the (4, 0, 1)
mode and the (4, 0, 1) mode changes into a (4, 2, 0) mode. Contrary to the results
for infinitely thin plates, cf. figure 8 in Linton & McIver (1998), no avoided crossings
are observed between (8, 0)D and (1, 2)Sector , cf. the upper shaded area in figure 3(a).
To check if our numerical discretization was inadequate, we performed a few test
computations with p = 3 on a larger computer which confirmed our p = 2 results.
Furthermore, the N = 7 results in figure 5 of Duan & McIver (2004) for infinitely
thin plates show a qualitatively similar behaviour so that indeed there seem to be no
avoided crossings in the shaded area between (8, 0)D and (1, 2)Sector for s/D =0.02.
Avoided crossings of eigenvalues are of considerable theoretical interest. However,
they occur at larger l/D whereas for typical applications in compressor cascades l/D

is much lower such that avoided crossings are of no importance there. For instance,
in the annular experiment of Parker & Pryce (1974) l/D = 0.25, and we marked the
trapped mode frequencies for the 8-fin case at l/D = 0.25 by filled circles in figure 3(a)
for later reference.

4. Single-plate cascade in annular duct
A real compressor has a finite hub-to-tip ratio d/D and small chord lengths

l/D. Linton & McIver (1998) outlined in their § 5 how to extend their mode-matching
analysis to annular cascades with infinitely thin plates and gave an approximate
solution for large N . In the following we compute the resonances numerically for
finite thickness plate cascades in an annular duct as depicted in figure 1. Symmetry
arguments about x = 0 can be used to limit our computation to the half space
x � 0. Guided by the experiment of Parker & Pryce (1974) we consider first a single
annular cascade with N = 8 evenly distributed plates with l/D = 0.25 and of thickness
s/D = 0.02 and vary the hub-to-tip ratio d/D. Starting with the d/D = 0 trapped
mode resonances of the previous section, marked by solid circles in figure 3(a), the
results of our computation are shown in figure 4. We note without proving it that the
number of trapped modes remains the same as for the radial fin case with d/D = 0
and the trapped mode frequencies drop slightly with increasing hub-to-tip ratio d/D.
For the higher order circumferential modes, the trapped mode frequencies (m, 0, 0) are
considerably lower than the corresponding annular duct cutoff frequencies (m, 0)D
which are shown by the dotted curves in figure 4. The cutoff frequencies (m, 0)D
depend on the hub-to-tip ratio σ = d/D and are k′(σ )

m,ρ/π where k′(σ )
m,ρ is the ρth zero

of J ′
m(x)N ′

m(xd/D) − J ′
m(xd/D)N ′

m(x), cf. Appendix B in Tyler & Sofrin (1962). Here
Nm(x) denotes the Bessel function of the second kind. For d/D = 1, the resonant
trapped mode frequencies approach the resonant frequencies of a corresponding two-
dimensional plate cascade with periodic boundary conditions imposed at y = 0 and
the duct perimeter y = Dπ as sketched, for example, in figure 1 of Ragab & Salem-
Said (2007) and the cutoff frequencies (m, 0)D approach m/π marked by the arrows
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Figure 4. Annular cascade with N = 8 radial plates of chord length l/D = 0.25 and thickness
s/D = 0.02: variation of frequency Re(K/2π) of trapped modes (m, 0, 0) (solid curves) as well
as corresponding duct cutoff frequencies (dotted curves) as function of hub-to-tip ratio d/D.
The filled circular symbols show the results for the radial fins of the previous section, the
asterisk symbols depict the experimental results of Parker & Pryce (1974) for d/D = 0.5. p = 2,
dPML = 2, σ0 = 2, �= 0.06/0.16.

(1, 0, 0) (2, 0, 0) (4, 0, 0) (8, 0, 0)

Figure 5. Examples of x -symmetric trapped mode eigenfunctions for the geometry
of Parker & Pryce (1974): N = 8, d/D = 0.5, l/D = 0.25, s/D = 0.02. Shown are the
eigenfunctions in the half plane x � 0 up to the downstream PML.

on the right-hand side of figure 4. Assuming c∗
0 = 340 m s−1, the asterisk symbols

at d/D = 0.5 in figure 4 depict the experimental results of Parker & Pryce which
agree fairly well with our numerical results despite the neglect of mean flow in our
computation.

Whereas in the experiment of Parker & Pryce (1974) the frequency of the first
circumferential trapped mode m =1 could only be excited by a loudspeaker mounted
at an opening in the side of the duct, the second, third and fourth trapped modes were
excited by vortices shed from the trailing edges of the plates. The fifth trapped mode
m = 8 was apparently outside the domain of their measurement. In our computation
the first three trapped modes (m, 0, 0), m =1, 2, 3 are spinning modes whereas (4, 0, 0)
and (8, 0, 0) are standing wave modes. The (4, 0, 0) mode corresponds to the ‘one node
per blade’ mode observed in the experiments of Parker, see Parker (1968), Parker &
Pryce (1974) and Parker & Stoneman (1985, 1987). Figure 5 shows examples of trapped
mode eigenfunctions for the geometry of Parker & Pryce. In the following we use
the experimental configuration of Parker & Pryce with d/D =0.5, l/D = 0.25, N = 8,
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Figure 6. Annular cascade with N = 8 radial plates of thickness s/D = 0.02 and hub-to-tip
ratio d/D = 0.5: variation of resonant frequencies Re(K/2π) as function of blade chord length
l/D. The asterisk symbols depict the experimental results of Parker & Pryce (1974) for
l/D = 0.25. p = 2, dPML =2, σ0 = 2, �= 0.06/0.16.

s/D = 0.02 and zero stagger angle as our reference geometry and vary individual
parameters such as blade chord length, blade pitch, stagger angle or blade sweep in
order to study their influence on the trapped mode resonances.

4.1. Influence of blade chord length

Figure 6 depicts the trapped mode resonances for 0 � l/D � 2. In an actual
compressor only the (m, 0, 0) trapped modes for low l/D are of interest. We note that
at these low l/D values the length of the blade chord has a strong influence on the
trapped mode frequencies: with increasing l/D, in particular for larger circumferential
mode numbers m, the trapped mode frequencies decrease considerably below the
cutoff frequency of the corresponding annular duct mode (m, 0)D . We also observe
that contrary to the radial fin case of § 3 no avoided crossings are observed because
now (0, 1)Sector > (4, 0)D .
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hub-to-tip ratio d/D = 0.5: variation of (m, 0, 0) trapped mode frequencies Re(K/2π) as
function of blade number N . The asterisk symbols depict the experimental results of Parker &
Pryce (1974) for N = 8. p =2, dPML = 2, σ0 = 2, �= 0.05/0.14.

4.2. Influence of blade number

Next we consider the influence of blade number N on the trapped mode frequencies
in figure 7. We see that with increasing blade number N more and more trapped
modes appear exactly as predicted by Duan & McIver (2004), namely for even
number of blades N/2 + 1 trapped modes (m, 0, 0) exist whereas for odd number
of blades (N − 1)/2 + 1 trapped modes (m, 0, 0) are possible. With increasing m

the trapped mode frequencies are significantly below the corresponding duct cutoff
frequencies (m, 0)D as can be seen in figure 7. The m =N trapped mode with the
highest frequency always has N wavelengths around the circumference and appears
to be always a standing wave. All others are spinning modes with the exception of the
trapped mode with the second highest frequency which corresponds to the ‘one node
per blade’ mode. Aside from the m = N trapped mode the trapped mode frequencies
remain almost constant with increasing blade number N . For the (unrealistic) case
of N =1 we computed an additional m = 2 mode with very low damping (depicted
by the filled upside down triangle in figure 7) which might also be a truly trapped
mode because its frequency is slightly below the duct cutoff frequency (2, 0)D (for the
corresponding infinitely thin radial fin case with d/D = 0 and N = 1 Linton & McIver
(1998) mentioned only the m =1 trapped mode).

4.3. Influence of blade stagger

Another important cascade parameter is the stagger angle α. In an actual compressor
cascade the stagger angle varies with radius. For simplicity, we keep the stagger angle
constant over the radius and are merely interested in the trend as α increases. For
staggered plates, no symmetry exists and we have to use the full geometry in our
computation. Figure 8 shows the dependence of frequency of the first four trapped
modes (m, 0, 0), m =1, . . . , 4 on the stagger angle for 0◦ � α � 80◦. The resonant
frequency increases slightly with stagger angle α similar to the results of Koch (1983)
for a two-dimensional cascade. As can be expected the trapped mode frequencies
approach the corresponding duct cutoff frequencies (m, 0)D as α → 90◦ (because for
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Figure 8. Annular cascade with N = 8 radial plates of length l/D =0.25, thickness s/D = 0.02
and hub-to-tip ratio d/D = 0.5: variation of first four trapped mode frequencies Re(K/2π) as
function of stagger angle α. The asterisk symbols depict the experimental results of Parker &
Pryce (1974) for α = 0◦. p = 2, dPML = 2, σ0 = 2, �= 0.06/0.16.

(1, 0, 0) (2, 0, 0) (4, 0, 0)

Figure 9. First three eigenfunctions of figure 5 but with α = 50◦ instead of α = 0◦. The
eigenfunctions are depicted between the upstream and downstream PML.

α = 90◦ and large enough N the blades act like a solid wall resulting in a semi-infinite
annulus). Only the higher circumferential modes show noticeable frequency changes
with α. Parker (1997) mentioned that for non-zero stagger the agreement between
experiments and theoretical predictions is generally not good because in some theories
incorrect assumptions are made as regards the configuration of the nodes upstream
and downstream of the cascade. Experimentally the nodes are found in planes normal
to the cascade. Figure 9 shows the first three eigenfunctions of figure 5 but for a
stagger angle α =50◦. The (1, 0, 0) mode is still very close to the duct cutoff frequency,
but the (4, 0, 0) mode clearly shows a node approximately normal to the plates.

4.4. Influence of blade sweep and blade taper

In modern turbofan engines vane sweep is used as a passive means of reducing vortex-
stator interaction tone noise, see for example, Schulten (1997), Envia & Nallasamy
(1999), Woodward et al. (2001), Elhadidi & Atassi (2005) and Cooper & Peake (2006).
Furthermore, Fric et al. (1998) demonstrated that tapered chord struts effectively
reduce the noise in an annular exhaust diffuser of an industrial gas turbine by
uncoupling vortex shedding from acoustic resonant response. One has to distinguish
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Figure 10. Annular cascade with N = 8 swept plates of length l/D = 0.25, thickness s/D = 0.02
and hub-to-tip ratio d/D = 0.5: variation of first four trapped mode frequencies Re(K/2π) as
function of sweep angle χ . The asterisk symbols depict the experimental results of Parker &
Pryce (1974) for χ = 0◦. p =2, dPML = 2, σ0 = 2, �= 0.06/0.16.

between reducing the sound source and enhancement of an existing sound source
by acoustic resonances. In the present paper we are only concerned about the latter,
and therefore investigate the effect of blade sweep and blade taper on the trapped
mode frequencies. For simplicity, we consider N = 8 swept or tapered plates of finite
thickness s/D and chord length l/D at the hub equally distributed around the
circumference of an annular duct as sketched in the lower left-hand side of figure 1.

Figure 10 shows the variation of the trapped mode frequencies with increasing
sweep angle χ . Again we have a slight increase of frequency towards the duct cutoff
frequency (m, 0)D which is more pronounced for the higher circumferential modes.
For the influence of taper we consider again N = 8 plates of thickness s/D and chord
length l/D at the hub with combined leading and trailing-edge taper of equal taper
angle γ = γl = − γt . The results for the first four trapped mode frequencies are shown
in figure 11. The trapped mode frequencies increase towards the corresponding duct
cutoff frequencies (m, 0)D . In this context it is of interest to note that Fric et al.
(1998) also observed a shift of peak amplitude frequency to higher frequencies with
increasing taper which might indicate that in their experiment the acoustic resonances
indeed controlled the vortex shedding.

5. Tandem plate cascades in annular duct
To obtain a better understanding of blade interaction noise in axial flow

compressors Parker and his co-workers carried out detailed experiments with fixed
tandem plates (Stoneman et al. 1988) as well as fixed annular tandem cascades
(Legerton et al. 1991). Johnson & Loehrke (1984) had studied the sound generation
by vortex shedding from tandem plates in an open jet and showed that plate spacing
is an important parameter. The results depended on whether the wake was laminar
or turbulent. For laminar wakes they observed a typical flow resonant feedback
mechanism similar to that described by Rockwell (1983) (compare also Lamoureux &
Weaver 1991): for constant flow velocity (i.e. constant Reynolds number) the frequency
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Figure 12. Sketch of tandem plates in rectangular duct with PMLs.

showed a saw-tooth-like behaviour with increasing plate separation and the amplitude
varied cyclically with plate separation. For constant plate separation a typical
frequency staging was observed with increasing flow velocity. For turbulent flow
and outside the vortex formation region the frequency was independent of plate
separation, and no feedback mechanism was observed although the amplitude of the
sound varied periodically with plate spacing. Stoneman et al. (1988) introduced an
acoustic resonator by enclosing the tandem plates in a hard-walled duct. In this case
the resonant frequency dominated the vortex shedding and large-amplitude noise
occurred over considerably wider lock-in ranges (compare the similar observations
by Mohany & Ziada (2005) for tandem cylinders in a duct). Similar extended lock-in
ranges were observed in annular cascades by Legerton et al. (1991) and in axial flow
compressors by Parker & Stoneman (1987). Therefore it is of importance to predict
the resonant frequencies in order to avoid possibly dangerous frequency ranges.

5.1. Tandem plates in rectangular duct

Before treating annular tandem cascades we reconsider the model problem
of Stoneman et al. (1988) namely two plates located in tandem on the centreline of
a rigid-walled duct of square cross-section h∗ = w∗ = 244 mm as depicted in figure 12.
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Figure 13. Tandem plates of Stoneman et al. (1988) in square duct: (a) resonant frequencies
Re(K/2π) of (nx, ny, nz) modes as function of gap g/h between plates. (b) damping Im(K/2π) of
(0, 2, 0) and (1, 2, 0) modes as function of gap g/h. The asterisk symbols depict the experimental
results of Stoneman et al. for Parker’s β mode (0, 0, 0) at g∗ = 30 mm and g∗ = 60 mm. The
triangular symbol at g/h =0.8 shows the experimental result for the upstream plate alone
and the cross symbols depict our corresponding computational results. The arrows on the
right-hand side of figure 13(a) mark the cutoff frequencies of the square duct. p = 2, dPML = 2,
σ0 = 2, �= 0.08/0.16.

For this problem the reference length l∗
ref is appropriately chosen as h∗. The first plate

has a chord length of l∗
1 = 66.7 mm and a thickness of s∗

1 = 8 mm. The downstream
plate has a chord length of l∗

2 = 40 mm and a thickness of s∗
2 = 5 mm. The second plate

could be moved in the downstream direction leaving a variable gap g∗ between the
first and the second plate. Instead of the semicircular leading and trailing edges of
the plates used by Stoneman et al., we chose plates of rectangular cross-section
because the rounding is of no influence on the resonances (note however that it
is important for the source mechanism). Similar to the annular duct treated in the
previous section all resonant modes are classified by three numbers (nx, ny, nz) where
nx denotes the number of nodal lines in x direction, ny the number of nodal lines
in y direction at the plate location and nz the number of nodal lines in z direction.
Parker’s β mode, which has opposite phase across the plate, is then simply (0, 0, 0).
The results of our numerical computation are shown in figure 13.

As noted by Stoneman et al. (1988), for zero spacing the resonant frequencies
are those for a single plate of the combined chord lengths and therefore lower. For
increasing gap between the two plates the resonant frequencies rapidly increase and
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asymptote towards the resonant frequencies of the plate with the larger chord, which
is the upstream plate (in figure 13 the single-plate results are depicted by cross symbols
at g/h = 0.8). Nothing has been said about the downstream plate with the shorter
chord. However, for large enough spacing the resonant frequencies of both plates
should show up asymptotically. This question can be resolved by assuming that both
plates have the same chord length and thickness, as discussed in figure 16 of Hein
et al. (2004) for the two-dimensional case. Then a symmetry about the middle of the
gap exists, and besides Parker’s x-symmetric β mode also Parker’s x-antisymmetric
α mode is possible albeit only for larger chord lengths. That is exactly what is
happening here: for larger gaps additional modes appear which have a nodal line
in x direction and whose frequencies asymptote for large gap towards the resonant
frequencies of the downstream plate with the shorter chord. In our case this is the
higher order resonant mode (1, 2, 0) in figure 13 which is depicted by a dashed curve.
The frequency of mode (1, 2, 0) increases with decreasing gap width and ends at the
duct cutoff frequency (0, 3)h ≡ (3, 0)h for g/h approaching 0. Besides Parker’s two-
dimensional trapped β mode (0, 0, 0) also three-dimensional trapped modes (0, 0, n),
n=1, 2, . . . with n nodal lines in z direction exist. But these are apparently not excited
at the flow velocities used in the experiment of Stoneman et al. All these trapped
mode frequencies are below the relevant cutoff frequencies (1, n)h, n= 0, 1, 2, . . . of
the square duct which are marked by arrows on the right-hand side of figure 13(a).
Furthermore, higher order two- and three-dimensional resonant modes also exist,
such as (0, 2, 0) and (0, 2, 1). However, these are highly damped as can be seen in
figure 13(b). For better comparison with the results of Stoneman et al. we also included
scaled abscissae for the gap g∗ in millimetre as well as the ratio g/s1. The experimental
results of Stoneman et al. for Parker’s β mode at g∗ = 30 mm and g∗ = 60 mm (their
figure 12), computed with c∗

0 = 343 m s−1, are marked by asterisk symbols in our
figure 13(a). At g/h = 0.8 we plotted the experimental result of Stoneman et al. for
the upstream plate only (their figure 9) and marked our corresponding computational
results by cross symbols. The agreement is quite good despite the zero mean flow
assumption in our computation. Furthermore, we see that at g/h = 0.8 the tandem
plate results are practically identical with the results for the upstream plate only.

Another experiment with tandem plates in a rectangular duct has been described
by Legerton (1992) in his voluminous PhD thesis. This thesis is hard to get and after
month-long fruitless attempts I obtained a copy only through the helpful intervention
of Stewart Stoneman. As Legerton identified three-dimensional trapped β modes, we
also compute the resonances for his geometry in the following. His rectangular duct
was h∗ = 200 mm high and w∗ = 100 mm wide and l∗

ref is taken to be h∗. The first
plate had a length of l∗

1 = 100 mm and was s∗
1 = 8 mm thick. Legerton considered

various lengths for the downstream plate, all s∗
2 = 5 mm thick, but his most extensive

tests were with a plate of length l∗
2 = 20 mm which will be used in our resonance

computation. The results for the resonant frequencies are shown in figure 14.
The modes (0, 0, nz), nz = 0, 1, 2, . . . , are apparently trapped modes below the

corresponding duct cutoff frequencies (1, nz), nz =1, 2, . . . , marked on the right-
hand side of figure 14. All other modes are damped. The asterisk symbols show
the experimental results of Legerton (1992) for Parker’s β mode (0, 0, 0) as well as
the three-dimensional Parker mode (0, 0, 1), extracted from Legerton’s figure 5.9, for
several gaps between the two plates and assuming c∗

0 = 340 m s−1. The results for the
first plate alone, taken from Legerton’s figure 5.1, are plotted at g/h = 0.5 as triangular
symbols and the cross symbols give our corresponding computational results. For the
single upstream plate Legerton found an additional mode at 3690 Hz (see his figures
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Figure 14. Tandem plates of Legerton (1992) in rectangular duct: resonant frequencies
Re(K/2π) of (nx, ny, nz) modes as function of gap g/h between plates. The asterisk
symbols depict the experimental results of Legerton for Parker’s β mode (0, 0, 0) and the
three-dimensional Parker mode (0, 0, 1) at g∗ = 22 mm, 40 mm, 60 mm, 80 mm. At g∗ = 100 mm
the experimental results of Legerton for the upstream plate alone are marked by triangular
symbols and our corresponding computational resonances by cross symbols. The arrows on
the right-hand side of figure 14 mark the cutoff frequencies of the rectangular duct. p = 2,
dPML = 2, σ0 = 2, �= 0.06/0.16.

(0, 0, 0) (0, 0, 1) (0, 0, 2)

Figure 15. First three trapped mode eigenfunctions for the tandem plates in a rectangular
duct for the geometry of Legerton (1992) with g∗ = 100 mm. The eigenfunctions are depicted
between the upstream and downstream PML.

5.1 and 5.2) which he identified as antisymmetric about x = 0, symmetric about y =0
and with two nodes in z direction. A mode with an antinode in the plane of the plate
is unusual and we could not find such a mode with low damping, but the frequency is
close to our (0, 0, 2) trapped mode which is antisymmetric about y =0 as all Parker
modes. To demonstrate this we depict the computed eigenfunctions for the first three
trapped modes at g∗ =100 mm in figure 15. The (0, 0, 0) and (0, 0, 1) modes agree
very well with our resonance computation. For better comparison with the experiment
of Legerton we again included an additional axis in figure 14 giving the gap g∗ in mm.

In summary, we can say that the acoustic trapped mode resonances of tandem
plates in a rectangular duct control the vortex shedding frequency through lock-on.
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Re(K/2π) of trapped modes (m, n, 0) as function of gap g∗[mm] between cascades. The
asterisk symbols depict some of the experimental results of Legerton. The triangular symbols
at g∗ = 50 mm show the experimental results of Legerton for the single upstream cascade. The
circular symbols at g∗ = 35 mm depict the theoretical results of Woodley & Peake (1999a).
p = 2, dPML = 2, σ0 = 2, �= 0.08/0.16.

The periodic increase and decrease of the modal amplitude with increasing gap width,
as observed by Stoneman et al. (1988) and Legerton (1992), is due to the feedback
mechanism between the vortices shed from the first plate and the vortices impinging
on the leading edge of the second plate.

5.2. Tandem cascades in annular duct

Legerton (1992), with first results published in Legerton et al. (1991), performed
experiments also with fixed annular plate cascades in tandem with a variable gap
between them, and we shall use his geometry for our numerical computations of
the acoustic resonances (compare figure 1 for our notation). Legerton’s annular
duct with d/D = 0.6 had an outer diameter D∗ =254 mm(10 in.) and inner diameter
d∗ = 152.4 mm(6 in.). The upstream cascade consisted of N = 15 plates of chord length
l∗
1 = 69.9 mm and thickness s∗

1 = 3.8 mm. The downstream cascade also consisted of
N = 15 plates which were of chord length l∗

2 = 40 mm and s∗
2 = 3 mm thick. Instead of

the semicircular edges of the upstream plates and the semicircular leading edge and
asymmetrically bevelled trailing edge of the downstream plates used by Legerton,
we chose rectangular plates because the edge form is of negligible influence for
the resonances. However, we note again that the edge form is of vital influence
for the vortex shedding source mechanism. Our computed resonant frequencies for
0 mm � g∗ � 50 mm are compared with the experimental results of Legerton in
figure 16.

Qualitatively, the results are very similar to those for the tandem plates in the
previous subsection, only instead of the three-dimensional modes (nx, ny, nz) with the
number nz of nodal points of a mode across the channel we have now our annular
modes (m, n, ρ) with the circumferential mode number m. Here n is the axial mode
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number and ρ denotes the radial mode number. For zero gap g∗ = 0 mm the tandem
cascade reduces to a single cascade with the combined chord length and eight trapped
modes (m, 0, 0), compare figure 7, seven of which are shown in figure 16. For g∗ > 0
these trapped modes are depicted by solid curves which for g∗ → ∞ quickly asymptote
towards the trapped modes for the single upstream cascade with the larger chord
length l∗

1 = 69.9 mm , marked by the cross symbols at g∗ = 50 mm. For g∗ = 0 also
modes (m, 1, 0) exist with one axial node. These are depicted by the dashed curves
which for g∗ → ∞ asymptote towards the trapped modes of the single downstream
cascade with the smaller chord length l∗

2 = 40 mm. It is also of interest to note that we
did not observe any nearly trapped modes which could be attributed to oscillations
in the gap between the two cascades. Only the continuous spectra, beginning at the
cutoff frequencies (m, 0)D in the empty annulus, show up in discrete form due to our
numerical treatment.

The asterisk symbols in figure 16 depict the experimental results of Legerton
(1992) extracted from his figure 5.30 for g∗ = 4 mm, 14 mm, 25 mm, 35mm and
g∗ =45 mm assuming c∗

0 = 343 m s−1. With increasing frequency Legerton observed
7 circumferential modes with increasing m which are to be compared with our
computed solid curves for the (m, 0, 0) modes. However, in his experiment the m =1
mode was excited only for a few gaps such as the one shown at g∗ = 14 mm. The eighth
trapped mode m =15 has a much higher frequency which is outside their measured
frequency domain. Legerton observed two m = 7 modes, however their exact origin is
not clear; in figure 16 we only plotted the first m = 7 mode. All experimental resonant
frequencies asymptote quickly towards the resonant frequencies of the single upstream
cascade depicted by triangular symbols at g∗ = 50 mm. We observe that the resonant
frequencies, in particular those of the higher m modes, are far below the relevant duct
cutoff frequencies marked by the arrows on the right-hand side of figure 16. Whereas
the lower circumferential modes agree fairly well with our computed resonances,
depicted by the solid curves, there is a discrepancy between our numerical and
the experimental values which increases with increasing m. The same trend can be
observed between the experimental (triangular symbols) and computational (cross
symbols) results for the upstream cascade alone plotted at g∗ = 50 mm (actually it can
also be seen in figure 4 for N = 8 and d/D = 0.5). The reason for this discrepancy
is still unclear. From Koch (1983) one would expect even lower resonant frequencies
if mean flow were included in our analysis such that neglecting mean flow can be
excluded as reason. Another reason could be inadequate grid resolution. We therefore
considered half the single upstream plate using symmetry about x = 0 and halved
the mesh size from �= 0.08/0.16 to �= 0.04/0.16. The result did not change. Then
we doubled the length of the PML to be dPML = 4 instead of dPML = 2, and again
there was no change in the result. We therefore conclude that the above mentioned
discrepancy is not due to inadequate accuracy in our computation.

The only available theoretical computation of acoustic resonances is by Woodley &
Peake (1999a) who compared their results with those of Legerton (1992) for
g∗ =35 mm in their figure 9. Woodley & Peake used a straight cascade with plates
of zero thickness but included mean flow. Their results are depicted in our figure 16
by circular symbols at g∗ = 35 mm. Woodley & Peake calculated resonant states for
the modes m =2, . . . , 6 by finding the zeros of the truncated infinite-dimensional
scattering matrix. However, it might be that their m =6 mode is actually the m =7
mode. Their lowest mode m = 2 is apparently affected by their assumption of small
annulus curvature but otherwise the results of Woodley & Peake are fairly close to
our numerical results.
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(1, 0, 0) (2, 0, 0) (3, 0, 0)

(4, 0, 0) (5, 0, 0) (5, 1, 0)

Figure 17. First five trapped mode eigenfunctions (m, 0, 0) and the eigenfunction (5, 1, 0) for
the annular tandem cascades of Legerton (1992) with g∗ = 35 mm.

We also computed the family of modes with one node in axial direction, i.e.
(m, 1, 0) with m = 1, . . . , 7, depicted by the dashed curves in figure 16. Apparently
these resonances were not excited in the experiment of Legerton (1992). In figure 17
the eigenfunctions of several trapped modes for g∗ =35 mm of figure 16 are depicted.
The domain of the shown eigenfunctions is cut in front of the first plate cascade to
give a view inside the cascade and ends at the beginning of the downstream PML.

Legerton (1992) also carried out tests with a circumferential offset between the
upstream and downstream cascade and found a substantial amplitude reduction or
even disappearance of modes when the offset was greater than one upstream plate
thickness. Furthermore, he no longer observed the cyclic variation in the amplitude
with axial spacing. This can be attributed to a reduction of the exciting source, namely
the wake impingement on the leading edge of the downstream cascade, because our
resonance computation with a 12◦ offset between the upstream and downstream
cascade, i.e. half a pitch, gave almost identical trapped mode frequencies as for
zero offset. This indifference of the trapped mode frequencies to circumferential offset
suggests that the resonances might not change significantly even if one of the cascades
rotates, i.e. in an actual compressor. However, the source mechanism changes if one
of the cascades rotates as demonstrated by Tyler & Sofrin (1962) (see also Woodley &
Peake 1999b).

Actual compressors have a different number of blades in adjacent cascades
(usually the number of stator blades is larger than the number of rotor blades).
Therefore, Legerton (1992) suggested that further tests should be performed with a
dissimilar number of plates in each row. With our numerical method this can easily
be done. First, we keep the number N1 = 15 of the upstream plates with the larger
chord length fixed and vary the number N2 of the downstream plates. The results
are shown in figure 18 for 0 � N2 � 20. Apparently the frequencies of the trapped
modes (m, 0, 0), dominated by the upstream cascade with the larger chord, remain
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Figure 18. Tandem cascades of Legerton (1992) in annular duct with g∗ = 35 mm: resonant
frequencies Re(K/2π) of trapped modes with fixed N1 = 15 and variable plate number N2.
The asterisk symbols depict the experimental results of Legerton for N2 = 15. p = 2, dPML = 2,
σ0 = 2, �= 0.08/0.16.

almost constant whereas the frequencies of the modes (m, 1, 0) follow the trend of
figure 7 as N2 → 0. On the other side, for fixed N2 = 15 and variable N1 the frequencies
of the modes (m, 0, 0) are very similar to those in figure 7 as N1 → 0. Again, this
seems to indicate that the blades with the largest chord length dominate the resonant
frequencies in multistage cascades.

6. Conclusion
Vortices or coherent structures shed in the wake of turbomachinery blades may be

strongly enhanced or controlled by acoustic resonances resulting in high-amplitude
tonal noise or even blade failure. Without resonance the amplitude of shed vortices is
limited by nonlinearity. With a resonator the amplitude is limited by the damping of
the resonator, i.e. the quality factor Q. Therefore, trapped modes with zero radiation
loss (Q = ∞), or nearly trapped modes with very low radiation loss, are of particular
importance. In the present paper we computed the resonances of single and tandem
cascades in circular or annular ducts and observed a finite number of trapped modes.
These trapped modes are not only the cause of high-amplitude tonal noise but
could possibly be also linked to limiting the stability of a compressor at off-design
conditions.

There are two possibilities to avoid such dangerous operating conditions. The first
is to eliminate or reduce the exciting source. This is not always possible. Therefore
the second method is to detune a dangerous resonance. To do this it is of importance
to predict the dangerous frequency domains and know how they can be changed by
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the various cascade parameters. In the present paper we investigated stationary single
and tandem plate cascade for zero mean flow approximating low-Mach-number flows.
The exact blade geometry is of minor importance for the resonances but influences the
wake source mechanism decisively. For single cascades the most important cascade
parameter turned out to be the chord length l/D. The number of blades N is
of importance only in so far as it determines the number of trapped modes. For
stationary tandem cascades the cascade with the larger blade chord determines the
trapped mode frequencies unless the gap between the two blade rows is very small.
This might even be true for multistage compressors but needs to be proved.

Naturally, our zero mean flow assumption as well as considering only stationary
tandem cascades are only a first step in an attempt to understand and predict acoustic
resonances in actual flow compressors. Whereas variable duct area and finite length
hub geometry can easily be included in the present numerical method, the extension
to non-zero mean flow with swirl and the interaction of moving rotor and stationary
vane cascades are non-trivial and are left for future investigations.

The author is grateful to Stefan Hein for stimulating discussions and various help
during this investigation. I am indebted to Bernd Hellmich for providing valuable
literature about compressor acoustics. Furthermore, I want to express my sincere
thanks to Stewart Stoneman for his help in obtaining a copy of Legerton’s PhD
thesis.

REFERENCES

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions . Dover.

Aguilar, J. & Combes, J. 1971 A class of analytic perturbations for one-body Schrödinger
Hamiltonians. Commun. Math. Phys. 22, 269–279.

Baslev, E. & Combes, J. 1971 Spectral properties of many body Schrödinger operators with dilation
analytic interactions. Commun. Math. Phys. 22, 280–294.
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